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Introduction

In this paper, we are going to introduce the guidelines of a learning design for primary
education we named Math in Color.

We will examine the howsof these three aspects:

1 How is that we pose learning arithmetic operatins as actions
9 How children could conform mental schemasut of such actions. And,
1 How children’s solving-problem ability could be improved from such schemas

The design we will introduce has been tested with encouraging outcomes. To exemplify
these outcomes, we will present samples hand-written by children participating in the
validating experiences.

In the first of these experiences, we tutored along 4 years a group of 10 children who
faced learning difficulties. The second was carried out under actual classroom conditions
in a setting of harsh economic situation such as poverty, family dysfunction, school
desertion, that was a low-income neighborhood in Medellin (Colombia).

Conceptual premises

In our endeavor, we found of great help following concepts from genetic epistemology.
They provided us with theoretical support and guidance along the design and testing
processes.

Our starting point is the statement that transformative actions stand at the base of all
knowledge, a subject interacting with her natural environment and her socio-cultural
surroundings (Piaget, 2008/1967). And this is so both in psychogenesis as well as in history
(Piaget & Garcia, 1982/1972). The grounding concepts are (Piaget & Garcia, 1997/1980):

I Action- based Schemas
9 Assimilation of schemas
f Accommodation of schemas

At the core, it is about answering the question of ¢how do we learn from an action
iterated many times, as assimilation- accommodation?

Let’s see an example, somewhat schematic, but that can help us follow the thread from
these concepts to the approach leading to the design (Figure 1).
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Figure 1. Configuration of an action-based schema

The action: Turning the steering
wheel in one direction so that
the vehicle will move in that
sense. In our first time we would
either be following somebody’s
indication, or by imitation, or by
discovery. At the beginning, we
would feel insecure.

Iterated practice withthisf or m o f

a ¢ t willbemd up in a sort of skill
we perform without thinking
¢How do | do it? First this, later
that... No, we perform it at once.

It may be said that we have incorporated what it is calledthes c he ma o f intb

our cognitive repertoire.

And, ¢if we were to find and obstacle on the road, in front of us? We would steer the
wheel appropriately in the direction demanded by this new situation. We have been able
toa s s i mhelneavtsigation into the schema we previously acquired. Also, we have
a c ¢ 0 mmottiasttuatdn turning the wheel in the adequate direction in order to

achieve an efficient outcome.

And, ¢if we were to find a new obstacle after the first one? We would coordinate a

steering action after the other in order to overcome the new situation.ltisas equenc e

coor di natlesdch aacasd we avauld be incorporating a constructive novelty into

our schema, a new learning.

Again, ¢if we would see a traffic signal that hasbeenp | aced 1 nstead? of

We would assimilate it into the schema and would perform accordingly.

However, ihow could we take such a stance coming from physical interactions, into the
conceptual and symbolic field p ar e x whach ib reath@matics? This is what we’ll try

to answer.

Our work hypothesis is:

If we were able to determine the action-based schemas which predate arithmetic
operations, we would be in a better position to improve learning environments,
enabling children to make sense of arithmetic operations. Therefore, in making
sense via action-based schemas, student’s ability to solve word-problems would

significantly improve.

In consequence, our search was an attempt to establish those primeval schemas of action
which could have laid down the foundations of arithmetical knowledge.
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Here, we are not going to present those historical scenarios. Instead, we will show the
schemas which we found in those scenarios as corresponding to each of the arithmetic
operations. These action-based schemas we shall present when showing our learning
design. Besides, we will present only a short but necessary reference to those schemas in
the formation of the concept of natural number and of addition/subtraction. The bulk of
this examination will focus on the schema underlying multiplication/division. We hold that
this schema is a corner-stone, a basic pillar for conceptualizing subsequent schemas for
concepts like quotient, fractionary numbers, ratios and functions, among other
fundamental aspects of mathematical thinking.

Before presenting the schemas for the arithmetic operations, we need to address to the
guestion of what action-based schemas in a conceptual and symbolic field such as
arithmetic operations would be like, in the range of factual arithmeticmakingas an action
differentiated from others.

Characterizing actions underlying arithmetic operations

When we speak of actions, many things could be understood. This is why it is necessary to
characterize those actions pertaining to the arithmetical undertaking.

1 They are purposive rational actionsi.e., “goal-oriented rational actions”
(Habermas, 1992/1981).

9 They are oriented to counting and measuring. Their goals have been stated so, by
mathematicians along history. (Descartes, Gauss, Riemann ...).

9 As every other action, these actions are framed in a spatial-temporal succession
exhibiting a beforeand an after.

9 They are reversible.

These last two features, which have become veiled by symbolic formalization, are the
ones we have placed focus on in our design, particularly in what is referred to problem-
solving.

As to the goals, there is a necessary differentiation between cultural Purpose of counting
for instance: bringing 4 sheep into a herd of 20, on the one hand; and, Intentionality of the
action itself for instance: adding 4 things to 20 things of the same class, on the other.
Cultural purposes are external to the action underlying arithmetic operations. They are
left aside in symbolic formalization.

Characterizing the action as factual action. The making

As to these actions as a factual making, there are many historical references about the
action of counting with tangible objects, which was gradually replaced by the worldwide
spread of the place-value decimal system. These were actions with tangible objects
arranged by hand in spatial frames of reference such as abacus, accounting tables, etc.
(See figure 2).



However, perhaps the most important aspect about this type of
actions is that the following three features became constituents of
factual arithmetical actions, and this is so from the concept of natural
number, through the actions of adding orremoving quantitiesto
multiplicative structuresarranging groups made out of groups of
those quantities:

1 Stepby-step procedure

i A sequences demarcated in a table in which every point is
both spatial and temporal

9 Every point or momentis determining factor with respect to

the action as a whole Figure 2. Engraving: Madame
Arithmetica, by Gregor Reisch, 1508

Dynamics of schemas

Now, let’s take a look to what we have established from the historic analysis as a
dynamic that would have laid down the schemas for each of the arithmetic operations.

We can think of schemas like ways of making, as we said before. In these ways we can
recognize two aspects:

i First, an orderly way of making, in a spatial-temporal succession, and,
i Anintentionality leading the action to an increased organizing of the number.

Actions become more and more embracing regarding the scope of the goals, and more
synthetic in the procedures. There is a trend towards economy of the action: A succession
of simple units, such as that of the formation of the natural number, is followed by
sequences of sequences. The number becomes organized in increasingly more complex
ways. Schemas that became consolidated are those step-by step procedures that have
been successful for purposes of calculation. See figure 3.

Means :> Goals

) Intentionality:
Step— by step making Calculating part or whole
. — Empirical verification of
] Correspondences J quantity conservation
Arranging H
quantities

; Outcome of
Counting :> counting
L J

= o

More efficient

More complex | *
number Sequencesupon | |5 \vays of making
arrangements Rihgtas ~ calculations

- J
|
| Economy of action >

Figure 3. Dynamics that set up schemas of factual counting actions
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N The path from the factual
[ [ + making to formalization
could be summarized in
Impllcatlons among X
successive actions Anticipated outcome the following way:
(logical necessity) B anicientd) Arranging tangibles on
t physical supports such as
abacus or counting tables
: allowed empirical

verification of quantity
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Deductive certainty
1

N their successful outcome
, E s _ in terms of quantity
Figure 4. From action to formalization conservation

Orderly sequences could be envisioned as an action implying the following, as well as
enabling to anticipate the outcome, that is, making inferencesin this manner, schemas
would become increasingly abstract, that is to say, without reference to actual amounts,
neither visualizing the spatial-temporal sequence. Symbolic formalization begins at this
point. See figure 4.

The interface History- Individual learning

The question now is écould students achieve learning of the arithmetic operations
similarly to the development of those primordial schemas in the history of mathematics?
Indeed, éwhy the interface between history and individual learning is possible? The
answer lies in the fact we stated earlier that the intentionality of the action itself is
independent from its cultural purpose.

This means, in first place that work in mathematics can be carried out in any cultural
context. In second place, we can choose at will the tangibles to be used. And, finally,
timing in history refers to millennia and centuries of experiential practices: failed actions,
successful actions repeated no one knows how many times... From there, we have the
symbolic formalizations as a cultural legacy. In consequence, today we know beforehand
where the action will lead us to and, therefore, it is possible to reduce the scale of time.
Our learning design was grounded on this heritage.

Another question remains: we assumed that a new schema is built over another one, then
¢ébuilding from which previous schemas could children assimilate and accommodate the
new schemas pertaining to the number? As we shall see later, schemas pertaining to the
number could be assimilated into those schemas set up by children in daily life
experiences. For instance:

A One-to-one correspondences to set the dining table.

A Adish is broken and their parts are glued together again.



A Adrawer containing several equal smaller boxes, severakimes.

A Small boxes containing each equal amount of marbles, and the big drawer contains
all the marbles.

It is worth noting that in historical contexts, as we have seen, there is a sequential
constructive order. The same cannot be expected in the individual process of each
student. Every child would have at her disposal a unique cognitive repertoire. Therefore,
what could be expected is not a linear learning; instead, trials and errors, anticipation of
schemas, incomplete schemas in process and so on. We shall see examples of this.

The “Math in Color” learning design

Once these questions have been settled, we can go on to our learning design. To start
with, the goals of the scenarios for children were posed close to what could be the
schemas achieved by them from actions with concrete objects in everyday surroundings,
such as: The game of putting in and taking awayow muchis the differenceHow much bigger
How much smaller,Those that fitThose that do notAdding and removing with groups of 10,
Naming the parts of a whole.

At first, children are expected to perform actions with tangibles; next, to portray these
actions in pictorial forms, in words and, finally, in symbolic representation. Besides, they
will experience guided problem solving in daily life contexts. In the worksheets for
students we did not use any of the technical terms we employed for the analysis. They are
written in common language.

It is worth mentioning that Medellin’s children worked with our design a limited span of 8
months, and only in those subjects related to integers.

Schemas preceding multiplication/division

Here, we are going to present only some Successive action one more, another more ...
examples of our designs for children to i

achieve the schemas pertaining to one name one name

AT . Lo one symbol one syrmbol
multiplication/division. However, before 1 2
working with experimentations intended

T . .. . Gooa) (5o o 0) 14

for multiplication/division, children should Initial { .o J Weadd [~ | ltcomes |+ ¢ 1
have accommodated those schemas  Quantity (. (Geos
pertaining to the natural number and to part part whole

addition/subtraction. As said previously,
these schemas were derived from the

o : Quantity conservation
historical analysis.

Figure 5. Schemas previous to experimentations for multiplication/division.
It is expected that these schemas previously achieved by children, would encompass the

successive action one more, one name, one symbol (behind natural numbers) and, the

sequence of adding or removing quantities in a part-whole relation (beneath addition and

subtraction), under a total quantity conservation. See figure 5.



The multiplication/division schema

We can consider that the action of grouping equal amounts of units is at the base of
multiplication/division. Making groups with equal quantities.

Two actions could be derived fromthisq u a ng ri ¢ wp

9 Making up a larger quantity aggregating quantity-group once, twice...
9 Sharing out a larger quantity into several equal groups once, twice ... so many
times.

Accommodation of those schemas in a wider schema will entail two novel constructions:

1 On one hand, the sequential counting of units now becomes counting groups of
those units.

1 On the other, the accommodation of how many timais performed in a sequence
for aggregating or sharing out, which entails an arrangement of the quantity in a
one-to-several correspondence.

In this schema, the sequence of units determining the number of times does not make
part of the resulting quantity; instead, it is referential for the action.

Thus, there are three spatial-temporal sequences in such an operational action: First, the
making groups of single units; second, setting in a one-to-several correspondence; and,
third, counting groups. See figure 6.

| 7 T (T ))
g
2] 66 b6d 6666 é666
3 once, twice, thrice, ...
Z
L Tbox) 2(box) 3(box)
Assimilation ~ * Sequence for counting
Previous schemas 4 + Part-whole relationship
| » Total quantity conservation
Accommodation
_ [« Counting groups
Two constructive ., Arranging quantity in
novelties L one-to several correspondence

Figure 6. Schema of actions for making groups. Multiplication/Division



Children at work

The child in figure 7 is working with one of the standard tangibles in our design, so called
Al andr dt’alkows hppreciation of the quantity in close correspondence with the
pertaining numeric symbol; also, as independent from the originating sequence. Here, she
is experiencing the basic action for multiplication/division: making equal groups of single
units and making up a larger amount gathering these groups; and, the reverse process of
breaking down in equal groups. The focus here is on ¢h 0 w  ma n are thene in tash

group?

Experimentations for children
luguemos i @‘:{.@ i{.@

¢ ¢Can we make up 21 exactly with groups of 7 Makmg up and

s No breaking down
VI quantities into
: equal groups

e T ey gt \
= ot » . & .' @
con vayes acnare (i3S e @

Yes can w.am o roups of Fin tatnl.z:r_

éPuede un grupe de @ bolites componerse exoctomente ogregande grupos de @

' I bolites?

st :‘f\’ NO

¢How many groupsof 3 balls fit exactly in a group of |8 balls?

Cudintos grupos de \&J bolitas caben exactemente en un grupo de N2/ bolitas?

‘ En un grupo de L 4 balitas caben excetamente £ grupos de 23 _ bolitas coda grupo y

queds___grepe de [/ bolitas

Figure 7. Making equal groups with Alandra’s box

Even though the exercise shown
in figure 8 is a similar to the

—_— —_— {How many groups
N :'e:db:')""iz::“ preceding one, the focus here is
o7t Eroupof 12balls? on ¢how many groups are there?

Thus, children can coordinate the

Covelvivnands - Hacke W lnvid l;:'s'zf:buk- three quantities involved in
: s tigrorde & 1 site .. . . .
p R ot multiplication/division in one
. :rno';:swo':‘;'g"s single fact: i(Howmany areni t s
; ‘ can we share out there in each group? é(Howma n y
— = — ‘bﬁ[s‘;"”"z t i mteeSe groups are added?

—
iHow mu c fis the resulting
Uee-.© : quantity?

Figure 8. Coordinating quantities in one single action
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After Iterated experiences intended for children to become aware of how they perform
this action, they would be able to express the coordination of those three quantities as
multiplication at once. See figure 9.

Stating the counting of -
groups as multiplication &%

$Can we make up 25 exactly with groups of 52

B @
Exsaprmss (on cugites (Fodenes componds extitomente ¢ 257 (on grupes de ’

s | S Ne
Ea0rn pars dtnor b compratacsin

(RS

55 o] [259] [oe] [+39 &
Bon

25 Ls equil to 5 muitiplisd 5 thuse
Batonces. A5 o ipusl o B eoillislicado &
15,7 7 —

Figure 9

The activity with tangibles shown in figure 10 representing multiple-submultiple as
container-contained is close to schemas related to daily life actions like keeping things in
drawers arranged in compartments.

Juguemos . . \ende /A .
¢Can we make up 10 exactly with groups of 57

Ersayemos con cajitas (Podemes compomer exoctomente &l D en grupos de @ 2

st  ~ | N

Espacio pere didujer lo comprobocidn

Multiples and
o 21022 vl y e o sk i submultiples

Enseyemes con cajitas (Podemos componer exactemente el (D <on grupos de @ ? as

#T> T enclosures

Especio pera dibujar o comprobocdn

Entences, UL~

Gotitall
right

—
D,

Figure 10. Multiple-submultiple as container-contained

9



Experiencing in order to accommodate

¢Can we make up 9 exactly with groups of 2?
Ensayemos con cajitas: cPodemos componer exactamente el @ con grupos de ® ?

st | No >

Espacio para dibujar la comprobacidn

1551 9 16d 1l 11 32
S 0 0 -

SR ‘ 829) process of
2 iswotwultiplicd 9 thues

-~ o n Mz o m p P20 )
Entonces, _ 2. /> LA PN AR r»[“v' L& DOty

Ensayemos con cajitas: ¢Podemos componer exactamente el @ con grupos de @ ?
st | NO | >%

Espacio para dibujar la comprobacién:

T

gl GO
9 iswotawultiple of2
Entonces, { N0 .5 wu t "fgvh:‘ 2

Figure 11

Accommodation in
a new schema is a

experimentation

It could be thought that
working with tangibles
and/or  with  pictorial
representations would
suffice for children to
readily coordinate those
quantities. However, a
look into the worksheets
makes evident that they
indeed require several
experimentations before
reaching effective
accommodation of such
coordination. See figure
11.

The activities shown in figure 12 are another way of experiencing multiplicative
relationships with square and rectangular fittings. From this experiencing, children are
expected to establish that an amount does not always fit exactly into another and,

therefore, there might be a remainder.

Fitting in, remainder or not

ilna group of |5 cubes ¢En un grupo de cubitos

can we fit groups of 3 b eRachamen e orimcs e
cubes exactly? ‘ cubitos?

si>{~o st NO | x

Espacio para dibujer la  Let's check by drawing Espacio para dibujar la

comprobacién: in this space comprobacién:
112 {2 11313
E-_(‘ Yqls | b
21z | | =18 la
dojaapfal | | | | oftLd
13134{45 13 [1u |15
'

iHow many groups of 3 cubes fit in a group of |5 cubes?

cCudntos grupos de @ cubitos ¢Cudntos grupos de @ cubitos

caben en un grupo de caben en un grupo de
cubitos? cubitos?

Resultaron _25 _ grupos de Resultaron _G___ grupos de
cubitos, cubitos,

And there is a group that does no fit of ___ cubes

¥ no encajo exactamente un grupo ¥ no encaja exactamente un grupo

de _O _cubitos. de_2___cubitos

Figure 12
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An example of difficulties in figure 13: This
child skipped the initial arranging of
tangible cubes. Instead, he attempted to
make the fittings directly on the grid in the
worksheet. We have found that initial
actions with tangibles were the entrance
door to the proficiency for working this
type of fittings, both in pictorial and
symbolic representation.

Besides Alandra’ boxes, thec u b e

Accommodation in a new schema
is a process of experimentation

‘ ¢En un grupo de cubitos

| caben exactamente grupos de
cubitos?

|
‘si7><No.

Espacio para dibujar la
comprobacidn:

\

|
T

<Cudntos grupos de @ cubitos
caben en un grupo de

\Cubi'cs?

Resultaron _5 grupos de

cubitos.

Y no encaja exactamente un grupo

de ({3 cubitos

Figure 13

‘*“7%’"’”* |
-,

‘sxwg‘m\ ‘

‘ Espacio para dibujar la
camprobacién:

¢Cudntos grupos de @ cubitos

caben en un grupo de {20)
cubitos?

Resultaron grupes de
cubitos,

¥ no encaja exactamente un grupo

de _x___ cubitos.

c aisl arotindr saltert tangible in our resources. In

the arrangements shown in figure 14, the round tokens signal the how many times the
group of cubes is gathered. The sequence goes in both directions: gathering or sharing out

equal groups of cubes.

Cube calculator

Multiplying and getting back

uguemos N :
) Cubos o, &

Gathering- Multiplication e Molticar =0

%Qg e N fiubﬂoi vlomdos‘; yeces

X x f = 21 cubitos

OOraTide

-

cubos E E ﬁ cada grupo de

=_cubos. *
Multiphcar

= 2 cubos

Figure 14
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After repeated actions gathering and sharing out equal
groups of cubes, children attempt finding symbolically
iy 3 the unknown, transferring terms in a simple equation.
-~ B o Here, assimilation to the schema of reversing the
JYe=[=] [ * =[] action is made. At this point, it is assumed that

' ¢ xes symbolic expressions would make sense for children, as

il T a synthesis, rather, as schemas they may have achieved
X122 | *@ along these experimentations. See figure 15.
g : ) piﬁﬁ

Figure 15. Reversing the action in symbols

However, some children still will not be quite sure. They would like to know é¢which sort of
actual arrangements these symbols correspond to? See figurel6.

- - —

Juguemoi Cuboy e 4 the scale go oxt of sabwnca!
= Ne

Supporting e i~
accommodation —=2
of symbolic ’ B
with cube L= 3
calculator

Figure 16

Well, finally working with symbolic formalizations. Thisist he ar r i v al point, n ¢
0 n. 8ee figure 17.

Petiezon Mwnos |

Figure 17. Finally working with symbolic formalizations

12



Children solving problems in daily life situations

Let’s go back to the question in our hypothesis iwould our learning design improve
student’s ability to solve word-problems in daily life situations?

Solving word-problems starts from a narrative in natural language about some event in life
involving actual objects. Children may understand the reading of the narrative or not. But
we have found many cases in which children who can understand the text are not able to
solve the arithmetic problem, éwhy?

Thepossi bi | ity waulllliedosvisin theipdssng from the schema underlying
the event in the narrative to the schema of the arithmetic action of the same order. Upon
assimilating into the arithmetic schema, children would be able to find which one is the
problem unknown, which could either be:

A missing part of a known whole,

The total amount starting from known parts,

The quantity resulting from equally sharing out a known total quantity, or

The number of times a known total amount is shared into equal groups each
containing a known quantity of things.

T
T
T
T

Our expectations were that children could tackle the solution under the configuration of
schemas they would have achieved in the experimentations proposed in our design. In
such case, they would be using strategies corresponding to that configuration, like:

9 Arranging known quantities in one-to-one correspondence, or

9 Setting in a correspondence one-to-several as if actually making a sharing out in an
orderly one-to-one sequence.

9 Following this arranging, the child would envision the amount to be found, and to
do so, she will perform a counting on the arrangement she previously made.

Over all, it is about arranging things found in daily life under guidelines proceeding from a
goal-oriented making. This is quite apparent in the examples of worksheets from children
engaged in problem solving, we shall show following.

13



Examples hand-written by children

In figure 18 what we could call a most
anthological infantile solution. It belongs to a
child that came to our tutorial center with
serious learning difficulties. He was not even
able to make pencil traces in the notebook.
Three and a half years later, we have this.

It is a solution without formal operations. He
was able to obtain it setting a one-to-several
correspondence and the ensuing counting of
groups.

CULALR|uegos

The carpenter shop (I)
| I Jener

e Aaane Vb dests Vumgrans e h buiar 60 Terper T
Ahury e S erpargu Secer 7w pore & Cbege

Don Mariano Is early at
his shop. He has a
request to make 7 tables
for the school. He needs
5 nails per table, (How

0n Marnans semasibe 5 st e sk o - many nails Don Marlano
T{!&Emm&ww(n\hmk«u~—dﬂ:&&"‘ has o getto make all the
et 1 At LOS) T ubles?
. tabLz.s e — nails
Frables HoWG{ SR U 35wails
EEEEEES SR Adding EnSto
A L Wt 5 wpto 7 tables
{ s 1 MVCOEE. F bimess.
1 | L ynpies 325 natls
o T ————

Figure 18

This same child made this synthesis of the schemas he represented in paper. In figure 19:

The carpeﬁter; shc#: >(-|‘|-) i B

Don Mariano, the carpenter; has
to make 5 tables. Each table
requires 5 nails.He buys a box
that brings 30 nails.

[f--vav-ﬁ————-— -~
S —

Coms ¢ Dem Moricne le encargares oteas 5 meses, cmmdludp‘ca
ey de pumtifias.

ﬂ~-

Lo caje trae 30 puntilies

Den Marane dijo. "Major que ssbren per =
wiguras se dofan ol martiller *

e akangond |o cofo de puntiios para ion § meson)
(okr O puretion? (Cudreon!

wnails anad

eachtable . ; i
rries - ‘&%W mtro.s:"

- . = ¢ —"59 mCM it

natls then : ug

therebe 5

watls

Yemui'“i ivvr*E;m*—bw.* = . :” - »

.- Pro S =
Figure 19

™ ¢Will the nails be enough for
the 5 tables?
¢{Would there be nails
remaining?
If so,;How many?

compror una

Correspondence
one to several

Asked to explain more clearly why there were nails left, he quickly got a blank sheet of
paper, made this drawing and said: “We run out of tables. Five nails left” (figure 20).
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Figure 20

Let’s see now what Medellin’s children did when confronted with a sheet showing only
enunciations at the post-test. We are going to see some examples of arrangements in

pictorial representation.

The one shown in figure 21 belongstoa 7 —
year first grader, who experienced games
with correspondences using the tangibles of
our design. He and his mates knew little
about formal arithmetic operations.

Kirst thing to notice is the linear
arrangement of quantities,
disposed to facilitate counting.
Quantities are grouped according
to the marble color.

Mencil traces can be seen in place of
the factual making of sharing out
and setting in correspondence
marbles with the children.

Kinally, he expresses in natural
language the awareness of what
he has done.

Sharing out 20 green marbles and 5 blue marbles
equallyamong 5 children

24 Ahora si, vamos a resolver ol problema, o sea, vamos a repartir las canicas de dos
colores

Fpadd para la solucion

A X A

@ O 32508555050 5 jrsiss
98640

iv each child got ‘

|4 green wmarbles
/// 11 bluz marble

02 d Nify, 1€3© :

4 (onilga ver f);’;

Samuel (7); 12/ Milena

Figure 21

The representations in figure 22 amazed us. These children had not experienced before
the action of sharing out a total amount in equal groups. ¢ls it likely to think that there is a
spontaneous tendency to arrange in groups, that arose from the preceding schema of one-
to-one and one-to-several correspondences they indeed had experienced?

15



Figure 22

These examples of failed attempts (figure
23) led us to believe that the difficulty to
represent the action is not due to inability
to make drawings. Rather, it is due to the
lack of an orderly arrangement of the
action. This orderly arrangement, we think,
is behind achieving the schemas of
arithmetic operations.

Figure 23

Next solutions belong to third graders, who had been bustling with the times-tables prior

to working with our design.

The birthday party

Paco Is arranginga party for his sister’s birthday

When solving problems, they relied, instead, to [l therewilibe 24 people. ,

Paco is going to make a milk shake for each one, but in his mixer he
pictorial representations of grouping and setting canprepareonly 4 shakesata time.
one-to-several correspondence, to finally count the

requested N u mb e r pds cart bemeers in

figure 24.

Figure 24
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In figure 25, more expressions of the same type
of grouping and setting in correspondence. Such

5 arrangements facilitate the counting to find the
requested number of times.

Figure 25

Next, shown in figure 26 is another problem demanding setting groups in correspondence.
Besides, here it is necessary to add an amount external to the number of times.

G0 S puente, syodonon & Luttd v a Lut # calowar 4 eded del abedo

{RN ) \\I—I‘ﬁ)—(\;%l =y h‘l\wo Grandpa'sage
ug4 . ¢{How old are you, Grandpa?
e asked Lucita and Luis.
Grandpa smiled and said: “You'll
b e | have to make it up. Each timel
i e - move my hand is 5 years. To that
£ o caecio sguente, syademon & Luctd y o Luks & ctkooler b eded dcd abrelo — YOU add ]5 years"_
5~10-15-20-25-30-35-4 5 (g — ‘ri?} Then Grandpa moved his hand 9
‘ % times and expected the

outcome by his grandchildren.

v oy diene 60 oo Reaching
10 ol expacin sipaente, syudenon 2 licsay s I:;‘.\ ' r‘.\i'u‘.‘l la edad dal abeela a'c co m m Odati o n
3 by means of
%5t )
15 three different
strategies

2 Responsta_© | Qh:.?_l() “‘,',':.\,V L0 ac s

Marliea [ 2% Dors

Figure 26
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What draws the attention in above examples is the action of counting groups in sequence,

expressed in different ways. In all cases, is remarkable the importance of the orderly
arrangement of quanfsetinicoeressponidence with ehé ti earhp osreaglu e n ¢
seqguence of t @ sFinaltyuamtheebottong the only dase of solution by

symbolic means only.

Quantitative outcomes

At the end of the school year, second and third grades of the Medellin experience were
compared with similar groups that had received conventional instruction in mathematics.
The percentage of success in answering a 20-item post-test is presented in table 1. It is
noticeable that children that worked with our design outperformed control group
students, both in reading comprehension as well as in problem solving.

Reading Success in .
comprehension solving ean Sk
Ave. age | | group

:roor&iix* :ZEZ?* L deviation
THIRD
Experimental (N=30) 8.6 89.3% 36.7% 60.8% 19.6%
Control (N=26) 9.3 45.4% 7.7% 34.5%" | 22.5%
SECOND
Experimental (N=41) 7.6 52.7% 51.9% 62.1% 23.8%
Control (N=30) 8.0 43.3% 10.0% 34.4% 22.5%

| Differences are statiscally significant
Table 1: Percentages of students succeeding in reading comprehension and problem solving
Conclusions

In general, the solutions worked out by children tend to show certain recurrent features.

9 Arranging the quantities, whether in linear dispositions or as groups.

9 Allocating either in one-to-one or one-to several correspondences, as sequential
arrangements.

9 Orderly and sequential counting, as once, twice, thrice...

1 Coordinating quantities as parts-whole, clearly showing the goal of that counting, i.
e., the answer.

1 Maintaining the conservation of the total quantity.

11t is worth noting that this result is similar to the scores obtained by Colombia in international
comparative assessments, such 8dMSS (1995and 2007) and PISA (2006).
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In a very large percentage of cases, the amount searched for is not found as the outcome
of formal operations. Instead, it is found by means of arranging in correspondence the
guantities in the problem narrative, as if they were actual things; then, they perform a
counting of what they need on these organized quantities, in order to find the answer.

We may assume that those recurrent aspects are the invariants in the schemas underlying
arithmetic operations. They can be conceived of as achievements by children, attained as
assimilations in previous schemas coming from daily life experiences with actual objects,
now, accommodated in new schemas pertaining to the number.

Then, we can assume that those children who were in better position to solve problems,
were those able to incorporate these schemas into their cognitive repertoire.

These invariants correspond to those of the schemas we found in the historic-
archeological analysis, which were the basis for the learning design we have just showed.

Confidently, we could say that these outcomes are encouraging as to the validity of both
posing arithmetic operations as actions, and of the learning activities designed
accordingly.

The significance of these schemas is that they represent the entrance door for children to
arithmetic as well as to mathematical knowledge at large.

Projections

Besides the obvious extension of this approach to the teaching/learning of more advanced
aspects of mathematics, our current work is oriented to examine the problem of the
meaning of arithmetic operations, under the hypothesis that pictorial representations as
the ones we have just shown, are frames of meaning.

It is an open question for us whether, when and how the experiences we have shown
could be taken into virtual learning environments.

In certain occasion Einstein said: ““Geometry is only points in space, but the important
thing is the event”. Hopefully, we could contribute to re-orient mathematical education by
such awareness.
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